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The principle of competitive exclusion in ecology establishes that two species living together cannot occupy
the same ecological niche. Here we present a model ecosystem in which the species are described by a series
of phenotypic characters and the strength of the competition between two species is given by a nondecreasing
(modulating) function of the number of common characters. Using analytical tools of statistical mechanics we
find that the ecosystem diversity, defined as the fraction of species that coexist at equilibrium, decreases as the
complexity (i.e., number of characters) of the species increases, regardless of the modulating function. By
considering both selective and random elimination of the links in the community web, we show that ecosys-
tems composed of simple species are more robust than those composed of complex species. In addition, we
show that the puzzling result that there exists either rich or poor ecosystems for a linear modulating function
is not typical of communities in which the interspecies interactions are determined by a complementarity rule.
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I. INTRODUCTION

Assemblies of biological species—ecosystems—can be
viewed as systems of elements that influence each other
through competition and cooperation[1]. Mathematical mod-
els advanced to describe the dynamics of these systems are
usually couched in terms of nonlinear rate equations which
are then integrated numerically, especially in the case of
many interacting species[2]. For large ecosystems, however,
an analytical statistical approach is more insightful since it is
practically impossible to explore fully the space of param-
eters associated with the rate constants and interaction
strengths solely through numerical means. Unfortunately, the
methods of statistical mechanics can be applied only in very
particular situations—namely, when the interactions are sym-
metric so that the dynamics maximize a quadratic Lyapunov
function [3] and when the interactions are antisymmetric so
that a constant of motion can be identified[4]. This contri-
bution focuses on the former case, since it can be thoroughly
investigated using tools of equilibrium statistical mechanics.

The uncertainty and complexity of the interspecies inter-
actions in nature grounds the suggestion that those interac-
tions should be considered as random variables. This ap-
proach may be viewed as a null hypothesis that provides a
standard to which the behavior pattern of realistic ecosys-
tems should be compared. In particular, the measures of how
the encounter betweenith and j th species affects the growth
of speciesi, denoted byJij for i , j =1, . . . ,N, are assumed to
be independent, Gaussian-distributed random variables[5].
This setting, however, fails to take into account the possibil-
ity of an underlying, nonrandom structure in the interspecies
interactions, which might explain cooperative behavior as
cross feeding and symbioses as well as the competitive be-
havior that results from the exploitation of the same niche by
different species. Here we explore an alternative model eco-
system in which the pairwise species interactions are regu-
lated by the degree of complementarity between species—
i.e., by the number of features or characters that distinguish
the interacting species[6]. Since the assignment of the char-
acters to each species is done randomly, the model retains the

randomness ingredient of the Gaussian model, while ac-
counting for an explicit, biologically motivated structure for
the interspecies interactions.

Borrowing from models for molecular recognition used in
the study of the immune[7] and olfactory[8] systems, it is
assumed that each species is characterized by a set ofp phe-
notypic characters,m=1, . . . ,p. The resulting interaction be-
tween a pair of species—say,i and j—depends on the pres-
ence or not of the same character in both species according
to a complementarity principle. Explicitly, we assume that
the interactions are functions of the Hebb rule

Jij =
Îp

N
FS 1

Îp
o
m=1

p

ji
mj j

mD, i Þ j , s1d

where theji
m are quenched, independent random variables

that take on the values ±1 with equal probability. If speciesi
exhibits characterm, thenji

m is set to 1; otherwise, it is set to
−1. In what follows we will assume that the number of char-
acters is extensive—i.e.,p=aN. Strictly, taxonomists define
species by searching for a reliable group of characters—i.e.,
characters that are possessed by all members of the species to
be defined and not by members of other species[9]. Here we
take a slightly different approach and define species by a list
of p identifiable morphological characters that a particular
species may or may not possess. Although we can guarantee
that each species is assigned a unique set of characters(the
probability that two or more species are assigned the same
set of characters vanishes as 2−aNN2 in the limit of largeN),
the odds of finding a reliable character to describe a species
in the taxonomic sense are negligible(it vanishes as 2−N for
largeN). However, since for some closely related species no
reliable characters have been identified, taxonomists have to
resort to a global approach akin to ours[9].

The modulating functionFsxd in Eq. (1) stands for any
odd nondecreasing function ofx. Hence,kJijl=0 and

kJij
2l =

a

N
E

−`

`

DzF2szd, s2d

whereDz=exps−z2/2ddz/Î2p is the Gaussian measure. Up
to now only the linear case[i.e., Fsxd=x] was considered in
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the literature[6,12]. Invoking Gause’s principle of competi-
tive exclusion[13]—two species living together cannot oc-
cupy the same ecological niche—we assume that the larger
the number of features shared by a pair of species(matches),
the stronger the competition between them, so thatJij .0
corresponds to pairs of competing species whereasJij ,0 to
pairs of cooperating species. The nonlinear Hebb rule was
proposed and studied within the context of attractor neural
networks [10,11], as a more realistic, from the biological
viewpoint, generalization of the standard(linear) Hebb rule
(see[14] for a review). This generalization seems also ap-
propriate in the present context of model ecosystems. For
example, one could envisage a situation in which the inter-
action becomes effective(nonzero) provided the net number
of matches exceeds a threshold value or the interaction could
simply saturate after a certain number of matches, the ex-
treme situation being the clipped interactionFsxd=sgnsxd.

In this contribution we use the replicator dynamics frame-
work to model the evolution of an isolated community of
interacting species[15]. As pointed out, in the case of sym-
metric interactionsJij =Jji , such as the nonlinear Hebb rule,
this dynamics maximizes a quadratic fitness functional so
that standard tools of the statistical mechanics of disordered
systems can be used to characterize its stationary states. Ac-
tually, the statistical characterization of these states is pos-
sible thanks to the remarkable result derived by Sompolinsky
that in the limit of extensivep the model with nonlinear
interactions is equivalent to the model with linear interac-
tions plus a Gaussian static noise, the variance of which is
determined by the nonlinear function[10]. In what follows
we will use that finding together with the replica method to
study how the choice of the modulating function affects the
statistical properties of the stationary states of the replicator
dynamics.

II. MODEL

We assume that the abundance of individuals of species
i =1, . . . ,N in the ecosystem,xi P f0,`d, is governed by the
nonlinear system of equations, so-called replicator equations,

dxi

dt
= xiSFi −

f

N
D , s3d

whereFi =−o jJijxj can be identified with the fitness of spe-
cies i and the termf=oixiFi ensures that the total concen-
tration

o
i=1

N

xi = N s4d

is kept fixed.
Apparently, this framework seems to be suitable only to

study chemostat cultures of microrganisms where the total
concentration is regulated to a constant level via some flux
control mechanism. However, since it was demonstrated that
the replicator dynamics forN species is equivalent to the
Lotka-Volterra equation forN−1 species, this formulation
can actually be applied to describe a much broader class of
ecosystems[15]. Finally, to prevent the unbounded growth of

any single species in the thermodynamic limitN→`, we
introduce a competition term between individuals of the
same species by settingJii =u.0 for all i. Hence the param-
eteru will be referred to as the intraspecies interaction.

In the case of symmetric interactions the asymptotic re-
gime of Eq. (3) can be characterized by looking at the
maxima of the fitness functional

Fshxijd = − o
i,j

Jijxixj , s5d

and so it can be shown that the only stationary states are
fixed points[15]. Following Sompolinsky, in the case that
the interactionsJij are given by the nonlinear Hebb rule(1)
and the number of characters is extensive, we write the fit-
ness functional as[10]

Fshxijd = − o
iÞ j
S J

N
o
m=1

p

ji
mj j

m + di jDxixj − uo
i

xi
2, s6d

wheredi j is a random Gaussian noise of zero mean and vari-

anced2/N with d2=asĴ−J2d. Here,

J =E
−`

`

DzzFszd, s7d

Ĵ =E
−`

`

DzF2szd. s8d

Note thatĴ is proportional to the variance of the interspecies
interactionsJij given in Eq.(2). It must be stressed that the
equivalence between the model with nonlinear interactions
and the model in which a Gaussian noise is added to the
linear interactions is valid only ifFsxd is odd,p is large, and
the expected value of random variablesji

m is zero.
Before embarking on the statistical mechanics analysis of

our ecosystem model, it is instructive to compare it with a
related model recently proposed in the literature—the
tangled nature model[16,17]. Inspired in models of adaptive
walks on complex fitness landscapes[18] (see [19] for a
formulation of stochastic walks which is more pertinent for
this discussion) this model identifies each individual in a
population of variable size by a binary string of fixed length:
the individual’s genome. The fitness of a given individual is
proportional to the overlap between its genome and the av-
erage genome of rest of the population, weighted by a ran-
dom interaction term that depends on the genomes of the
interacting individuals. The main effect of this random term
is to break the symmetry of the interactions. The individual’s
genome is akin to the feature vectorji =sji

1, . . . ,ji
pd and the

dependence of the fitness on the overlap between genomes is
similar to that exhibited in Eq.(6). A crucial difference be-
tween the models, aside from the symmetry of the interspe-
cies interactions, is that in the tangled nature model the ge-
nomes can change via mutations, leading to a very rich
dynamics characterized by long stasis periods and very sharp
transitions. Moreover, the notion of species appears as an
emergent structure in the distribution of the population in
genome space[16,17]. As expected, the complexity of the
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tangled nature model precludes an analytical approach to
study its dynamics and the investigations of that model were
limited so far to computer simulations. It is interesting to
note, however, that it is possible to study analytically within
the equilibrium statistical mechanics framework the coupled
dynamics of species and features by exploring the physical
interpretation of the finite number of replicas proposed by
Coolen et al. [20]. We shall pursue this research line in a
future contribution.

III. REPLICA APPROACH

The maxima of the fitness functional can be obtained
within the statistical mechanics framework in the limit of
infinite N (and hencep). Since the presence or absence of a
character in a given species is decided randomly, we must
resort to the replica approach in order to obtain the average
free-energy density from which the relevant parameters of
the model can immediately be derived. We begin by defining
the average free-energy densityf as

− bf = lim
N→`

1

N
kln Zl, s9d

where

Z =E
0

`

p
i

dxidSN − o
i

xiDexpfbFshxijdg s10d

is the partition function andb=1/T is the inverse tempera-
ture. The notationk¯l stands for the average over the prob-
ability distribution of the quenched random variablesji

m and
the Gaussian noisedi j . Taking the limit T→0 in Eq. (10)
ensures that only the states that maximizeF will contribute
to Z. As usual, the evaluation of the quenched average can be
carried out through the replica method, which consists of
calculating kZnl for integer n—i.e., Zn=pa=1

n Za—and then
using the identity

kln Zl = lim
n→0

1

n
lnkZnl, s11d

in which the analytical continuation ton=0 is implicit.
After standard algebric manipulations that include saddle-

point integrations in the limit of largeN, we find

f = − lim
n→0

extr
1

nHbo
a,b

qabs2d2qab − q̂abd + o
a

ra

+ o
a

QafbsQ̂a + d2Qad − u + aJg +
1

b
ln G0sq̂ab,Q̂a,rad

+
a

b
ln G1sqab,QadJ , s12d

where

G0 =E
0

`

p
a

dxa expF− bo
a

xasra + bQ̂axad + b2o
a,b

q̂abxaxbG
s13d

and

G1 =E
−`

`

p
a

dya

Î2p
expF−

1

2o
a

ya
2s1 + 2bJQad

− 2bJo
a,b

qabyaybG . s14d

The relevant physical order parameters are

qab =
1

N
o

i

kkxiaxiblTl, a , b, s15d

and

Qa =
1

N
o

i

kkxia
2 lTl, s16d

which measure the overlap between a pair of stationary states
labeled by the replica indicesa and b and the overlap be-
tween the stationary state labeled bya with itself. Herek¯lT

stands for a thermal average taken with the Gibbs distribu-
tion

Wshxijd =
1

Z
dSN − o

i

xiDexpfbFshxijdg. s17d

To proceed further and evaluate the extremum in Eq.(12) we
must make some simplifying assumption about the structure
of the saddle-point parameters.

A. Replica-symmetric solution

The simplest guess is that the saddle-point parameters are
symmetric under permutations of the replica indices—i.e.,

qab=q, q̂ab= q̂, Qa=Q, Q̂a=Q̂, and ra=r. This prescription
facilitates greatly the evaluation of the integrals in Eqs.(13)
and (14), resulting in the following replica-symmetric free
energy density

fT =
b

2
qs2d2q − q̂d +

aJq

1 + 2bJsQ − qd
− QfbsQ̂ + d2Qd

− u + aJg − r +
1

2b
lnsQ̂ + q̂/2d −

1

2b
lnsp/4b2d

+
a

2b
lnf1 + 2bJsQ − qdg −

1

b
E Dz lnfeJz

2
erfcsJzdg,

s18d

where

Jz =
r − q̂1/2z

2sQ̂ + q̂/2d1/2
. s19d

In this framework the definitions(15) and (16) become

q =
1

N
o

i

kkxilT
2l, s20d
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Q =
1

N
o

i

kkxi
2lTl, s21d

where the thermal average is now calculated using the
replica-symmetry prescription. HenceQ−q.0 is the aver-
age variance of the species concentration at equilibrium. The

saddle-point parametersq, Q, r, q̂, andQ̂ can be obtained by
solving the five coupled nonlinear equations that result from
extremizing the free energy with respect to each of them.
Since our aim is to single out the states that maximize the
fitness functional, we must consider the zero-temperature
limit b→` of the saddle-point equations. In this limit it is
convenient to introduce the auxiliary parametersv=2bsQ
−qd, D=r / q̂1/2 and l=2bsQ̂+ q̂/2d so that the saddle-point
equations are written as

v =
1

l
E

D

`

Dz zsz− Dd, s22d

1 =
q̂1/2

l
E

D

`

Dzsz− Dd, s23d

l = u − d2v −
avJ2

1 + vJ
, s24d

Q =
q̂1/2

l
sq̂1/2v − Dd, s25d

q̂ = QFd2 +
aJ2

s1 + vJd2G . s26d

Using Eqs.(22) and (23) we can rewrite Eq.(25) as

Q =

E
D

`

Dzsz− Dd2

FE
D

`

Dzsz− DdG2 s27d

in order to make clear thatQ is a positive quantity. Finally,
taking the zero-temperature limit in Eq.(18) and using these
saddle-point equations to simplify and rearrange the terms
yields the expression

f0 =
Q

2
sl − d2vd −

aJ2Qv
2s1 + vJd2 s28d

for the average fitness of the population. The results for the
standard random replicator model are recovered by setting
J=0 and d2=1 [5] and those for the linear Hebb rule by
settingJ=1 andd2=0 [12]. Except forQ, which is propor-
tional to the probability that two randomly selected individu-
als belong to the same species, a measure known as Simp-
son’s index[21], and the suceptibilityv that measures the
fluctuations around the average species concentration,
knowledge of the saddle-point parameters is not very illumi-
nating. However, they are necessary to the evaluation of
more informative quantities such as the values that the spe-

cies concentrationsxi can take on. This can be done by cal-
culating explicitly the cumulative distribution that the con-
centration of a given species—say,xk—assumes a value
smaller thanx, defined by

Cksxd = lim
b→`

E
0

`

p
j

dxjQsx − xkdWshxijd, s29d

whereQsxd=1 if xù0 and 0 otherwise, andWshxijd is given
by Eq. (17). Since all species concentrations are equivalent,
we can writeCksxd=Csxd∀k and evaluate Eq.(29) by adding
the field termhoiQsx−xid to Eq. (6). Taking the derivatives
of the resulting free energy with respect toh and then the
limit h→0 yields

Csxd = 1 −
1

2
erfcFDq̂1/2 + lx

s2q̂d1/2 G . s30d

An interesting outcome of the random replicator model is
that a fractionCs0d of the species are extinct in the stationary
regime[5]. Since the mechanism of extinction is clearly out-
competition, the extinction sizes must be determined by the
form of the interspecies interactions. To investigate quantita-
tively this effect we define the diversity index,

d =
1

2
erfcsD/Î2d, s31d

as the fraction of surviving species at equilibrium. We note
that there seems to exist a remarkable correlation between
the reciprocal of the parameterQ and the diversity index
[22]. In fact, the larger the fraction of surviving species, the
smaller the probability that two randomly chosen individuals
are of the same species.

B. Stability analysis

Before we begin the presentation and discussion of the
numerical solution of the saddle-point equations it is impor-
tant to check that the replica-symmetric solution is in fact
locally stable. An instability of the solution is determined by
a sign change in(at least) one of the eigenvalues of the
matrix of quadratic fluctuations around the replica-
symmetric solution. Following the standard stability analysis
[23] it can be shown that the stability is determined by the
eigenvalues of the matrix

S]2G0 − 1

− 1 4b2d2 + a]2G1
D , s32d

where]2G0 is thefs1/2dnsn+3dg-dimensional matrix of sec-

ond derivatives ofG0 sq̂ab,Q̂a,rad with respect to its argu-
ments. Similarly,]2G1 is thefs1/2dnsn+1dg-dimensional ma-
trix of second derivatives ofG1 with respect toqab andQa.
Requiring all the eigenvalues of this matrix to be positive
leads to the following condition(see[24] for a similar cal-
culation)
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L = Fd2 +
aJ2

s1 + vJd2G d

l2 , 1. s33d

We note that the factord defined by Eq.(31) is missing in an
analogous formula presented in Ref.[12]. This factor is nec-
essary to recover the results for the Gaussian model[25].

IV. RESULTS

To solve numerically the saddle-point equations(22)–(26)
one has to fix the control parametersu anda as well as the
function Fsxd. To set a standard for comparing the effects of
different choices of the functionFsxd we discuss first the
linear case—i.e.,Fsxd=x (see[12] for a preliminary analysis
of this limit).

A. Linear interactions

This case is obtained by settingd2=0 and J=1 in the
saddle-point equations. The trick to solve those equations is
to considerD as a fixed, given parameter andu as unknown.
Hence by varyingD we can find the saddle-point solutions
for different values ofu. This procedure is effective because
in the linear case we can write all sadddle-point parameters
as explicit functions ofD as in the case ofQ [see Eq.(27)]
andv,

v =
faQsDdg1/2

faQsDdg1/2 − RsDd
, s34d

where RsDd=eD
`Dzzsz−Dd /eD

`Dzsz−Dd and we have made
explicit the dependence ofQ on D through Eq.(27). The
final result is summarized in Fig. 1 where we show the de-
pendence of the reciprocal ofQ on the parameteru. The
unusual feature is the appearance of three solutions in the
regimeuùa anda,1/2. However, only the solution corre-
sponding to the larger value of 1/Q (upper branch) is physi-
cal. The other two solutions correspond to negative values of
the suceptibilityv and so they must be discarded. In fact, the
regime of multiple solutions occurs when the denominator of
Eq. (34) is negative and the onset of this regime is deter-

mined by the vanishing of this denominator and the conse-
quent divergence ofv. As it is clear from Eq.(22), v→` is
solution provided thatl→0, which, according to Eq.(24),
impliesu=a. The precise values ofD (and hence of 1/Q) at
which this divergence takes place are obtained by solving
aQsDd−R2sDd=0 and the solutions, in terms of 1/Q, are
shown in Fig. 2 as function ofu=a. This equation does not
have solutions fora.1/2 and hence there is no divergence
of the susceptibility in this regime. In particular, we find
Qc=p at a=u=1/2.

The discontinuity of the saddle-point parameterD at u
=a,1/2 resulting from the dropping of the unphysical so-
lution is, of course, reflected on the diversity measure. Figure
3 illustrates this point and highlights the remarkable result
that for certain choices of the intraspecies competition pa-
rametersu,1/2d there are either rich or poor ecosystems:
intermediate diversity values are simply forbidden. We have
no physical or biological intuition to explain this behavior
pattern, especially because it seems to be unique to the linear
case. In fact, from the mathematical viewpoint, the saddle-
point equations admit a solution with diverging suceptibility
v because of the simultaneous vanishing ofl such that the
productlv goes to a finite constant according to Eq.(22).
Inspection of Eq.(24) shows that such a solution is not ad-

FIG. 1. Reciprocal of the saddle-point parameterQ as function
of u for linear interactions anda as indicated in the figure. Foru
.a anda,1/2 only the higher branch(larger 1/Q) is physical.

FIG. 2. The reciprocal of the saddle-point parameterQ at u
=aø0.5 where the suceptibilityv diverges in the case of linear
interactions.

FIG. 3. Diversityd as function ofa for linear interactions andu
as indicated in the figure.
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missible in the case thatd2.0. We conclude then that the
threshold phenomenon illustrated in Fig. 3 is not robust to
the presence of Gaussian noise, even for a vanishingly small
variance or, equivalently, to any distortion of the linear Hebb
rule.

Although it is clear that increasing the intraspecies com-
petitive interactionu leads to an increase of diversity, it is
more difficult to understand why the increase of the number
of features of each species results in a reduction of diversity.
This can be explained by noting that, whatever the choice of
Fsxd, the variance of the interspecies interaction strengths
grows linearly with a [see Eq.(2)]. This means that the
largera, the greater the odds of producing pairs of strongly
cooperating species such that the interactions among them
overshadow the self-restraint parameteru. The diversity re-
duction observed in Fig. 3 is then a consequence of the un-
restricted growth of small groups of species that ends up to
drive less favorable species to extinction in order to fulfill
constraint(4). A word is in order about the stability of the
replica-symmetric solution. Fora,1/2 we find that this so-
lution is stable foru,a, while for a.1/2 it is stable foru
slightly smaller thana (see Fig. 6).

B. Three-level interactions

The choice of the modulating functionFsxd determines
the magnitudes of the interspecies interactions. However, it
is often the case that no quantitative information is available,
and the best we can infer are the signs of the interactions[1].
To model this scenario we setFsxd=sgnsxd if uxu.u and 0
otherwise. Hence the interactions become effective only if
the net number of matches(or mismatches) between homolo-
gous characters exceeds the cutoff valueuù0. Clipped in-
teractions are obtained by settingu=0. Evaluation of Eqs.(7)
and (8) yields J=s2/pd1/2exps−u2/2d and Ĵ=erfcsu /Î2d, re-
spectively. Hence the varianced2 is a monotonically decreas-
ing function of u. Figure 4 shows the dependence of the
diversity on a in the case of clipped interactionsu=0. As
pointed out before, there is no threshold phenomenon in case
of nonlinear interactionssd2.0d; i.e., all saddle-point pa-
rameters are smooth functions of the control parametersu
anda. We note a substantial reduction of diversity as com-
pared with the linear case. This point is reinforced in Fig. 5
where the effect of varying the cutoffu is presented together
with the result for the linear case. For fixeda the diversity
increases monotonically with increasingu, approaching its
maximum valued=1 in the limit u→`. This behavior is
expected for large values of the cutoff(i.e., u.a1/2) since
then most of the off-diagonal interactions and, consequently,
of the randomness are removed from the fitness functional.
However, the effect of a small cutoff is more subtle and, as
we shall see, depends on the particular choice of the modu-
lating function.

The regions in the spacesa ,ud where the stability condi-
tion (33) is satisfied are shown in Fig. 6. The equationL
=1 defines the so-called Almeida-Thouless(AT) line that de-
limits the stable(above the AT line) and the unstable(below
the AT line) regions. The nonlinearity makes the replica-
symmetric prescription less reliable for smalla, which is
expected since there is an additional source of(Gaussian)
randomness in this case. For largea, however, this prescrip-
tion is more reliable since foru.0 the variance and hence
the typical magnitude of the off-diagonal interactionskJij

2l
~aĴ is smaller than that of the linear model.

FIG. 4. Diversity as function ofa for clipped interactionssu
=0d andu as indicated in the figure.

FIG. 5. Diversity as function ofa for three-level interactions
(values ofu indicated in the figure) andu=0.5. The thin line is the
result for the linear case.

FIG. 6. Almeida-Thouless lines in the planesa ,ud for the three-
level interactions model(values of the cutoffu as indicated). The
thin solid line is the result for the linear case and the dashed straight
line is the diagonala=u.
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C. High- and low-pass filters

The main advantage of studying a model ecosystem is, no
doubt, the option to carry out any type of experiment to
clarify the behavior of the observables of interest. In the
present context, an interesting possibility is to carry out a
selective elimination of interactions, depending on their
magnitudes. In the case of the high-pass filter,Fsxd=x if
uxu.uh and 0 otherwise; this may be justified by identifying
the cutoff uhù0 with the precision with which the interac-
tion strengths are measured, so that magnitudes below the
cutoff value are simply not detectable. Alternatively, by
knocking out the small interactions we can infer their influ-
ence on the ecosystem diversity. Evaluation of Eqs.(7) and

(8) now yieldsĴ= Ĵh andJ=Jh with

Jh = s2/pd1/2uh exps− uh
2/2d + erfcsuh/Î2d s35d

andĴh=Jh, so thatd2=aJhs1−Jhd. We note thatd2 reaches its
maximum valuea /4 at uh

* <1.538 and the linear case is re-
covered by settinguh=0. Figure 7 illustrates the nontrivial
role played by the weak interactions—depending on the
value of a, their removal results in a great reduction of di-
versity, in stark contrast to our previous finding for the three-
level model. As pointed out before, the increase ofd for large
cutoff values is an expected effect of the elimination of the
random off-diagonal interactions. The diversity minimum
displayed in this figure fora not too large is probably a
consequence of the existence of a maximum in the variance
d2 of the Gaussian noise term. We note, however, that while
the value of the cutoff corresponding to the diversity mini-
mum decreases and ultimately disappears for increasinga,
the maximum ofd2 occurs atuh

* , regardless ofa. Naturally,
one expects the replica-symmetric saddle-point to be less re-
liable in this situation of maximum randomness. This intu-
ition is actually confirmed by the Almeida-Thouless lines
exhibited in Fig. 8, although the points of maxima in these
lines do not coincide exactly with the cutoff that maximizes
d2.

This analysis was complemented by the inspection of the
low-pass filter,Fsxd=x if uxu,ul and 0 otherwise, withul

ù0. The linear case is recovered in the limitul →`. Using

the notationĴ= Ĵl and J=Jl, we find Ĵl =Jl =1−Jh, with Jh
given by Eq.(35). Hence the varianced2 coincides with the
variance of the high-pass filter and, in particular, it reaches a
maximum value atul =ul

* <1.538. This explains the striking
similarity between Fig. 9, which shows the diversity as func-
tion of the cutoff for the low-pass filter, and its counterpart
for the high-pass filter, Fig. 7. These two figures indicate that
the removal of either very weak or very strong interactions
has little or none effect on the diversity of the ecosystem,
except fora close tou, when, in the case of the high-pass
filter, the diversity decreases linearly with increasinguh for
small values of this cutoff. We note that the qualitative de-
pendence ofd on the cutoff exhibited in Figs. 7 and 9 is not
altered by changing the value of the intraspecies interactions
u. Moreover, the Almeida-Thouless lines for the low-pass
filter exhibit maxima for all values ofa, similarly to what we
have found in the analysis of the high-pass filter.

D. General remarks

The high- and low-pass filters discussed above can be
viewed as a kind of discriminating dilution or disconnection

FIG. 7. Diversity as function of the cutoffuh for the high-pass
filter with u=0.5 anda as indicated in the figure.

FIG. 8. Almeida-Thouless lines in the planesuh,ud for the high-
pass filter anda as indicated in the figure.

FIG. 9. Diversity as function of the cutofful for the the low-pass
filter with u=0.5 anda as indicated in the figure.
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of (bidirectional) links in the community web. Interestingly,
the very same set of saddle-point equations, Eqs.(22)–(26),
can be used to describe the situation in which the species are
disconnected at random. In fact, Sompolinsky has shown that
if the links are cut randomly so that the average number of
links for each species isNc with cP s0,1g, then the effect of
dilution will be equivalent to the addition of an independent
Gaussian noise of varianced2=as1−cd /c to the Hebb rule
sJ=1d [10]. This result depends on rescaling the mutual in-
teractions, Eq.(1), by c and so the self-interactionu must be
rescaled accordingly. The results for the fully connected, lin-
ear case are recovered forc=1. In Fig. 10 we illustrate the
effect of random dilution on the ecosystem diversity. The
results are very similar to those of selective dilution depicted
in Figs. 7 and 9, although in this case there is no direct
correlation between dilution and the magnitude of the inter-
actions, except perhaps for a negligible sampling effect.

A traditional approach to study the structure of ecosys-
tems is to look at the number of species that a habitat can
sustain and at the relative abundance of each species in the
community. In particular, field ecologists had long observed
that most species of plants in a secluded community were
relatively rare, while a few species were fairly common[26].
Those data are satisfactorily fitted by geometric distributions,
which, in turn, are derived using continuous-time branching
process to model the birth and death of species[27,28]. In
the present model, the distribution of species abundancex is
given by the derivative of the cumulative distribution, Eq.
(30), which yields a Gaussian term centered atx=−Dq̂1/2/l
plus a Diracd at the originx=0. Hence most of the surviving
species occurs at a well defined abundance value, so that
both rare and common species are very infrequent. Since the
particular form of the cumulative distribution(30) results
from the mean-field, quadratic(or higher-order[29]) nature
of the interactions between species, it is unlikely that a geo-
metric (power-law) distribution for the species abundance is
derived in the random replicator framework.

To conclude this section we present in Fig. 11 a compari-
son between the analytical predictions based on the replica-
symmetric prescription and the numerical results of the

brute-force solution of Eq.(3) for several choices of the
modulating functionFsxd. Here we focus on the reciprocal of
the order parameterQ, in order to highlight its similarity
with the diversity measure privileged in the previous figures.
The agreement is excellent in the regions where the replica-
symmetric saddle point is stable, which correspond to the
regime of smalla, but even outside this region the agreement
is not bad. When the variance of the off-diagonal interac-

tions, which is proportional toaĴ [see Eqs.(2) and (8)], is
very small compared to the self-interaction termu, we find a
regime characterized by the coexistence of a macroscopic
number of species(i.e., xi <1 for all speciesi) and hence

1/Q→1. In the other extreme, whenaĴ@u, the stationary
solution is characterized by the dominance of a few species
only (i.e., xi <N for a finite number of species), implying
that 1/Q~1/N. In this sense, for largea the discrepancy
between the theoretical prediction derived in the thermody-
namic limit and the simulations carried out for finiteN was
expected already. The result for the low-pass filter tends to
zero much slower than for the other modulating functions

because the factorĴ in the variance of the off-diagonal inter-
actions is much smaller in that case.

V. CONCLUSION

Ecology was one of the first disciplines of biology to em-
brace mathematical thinking and modeling as a guide to at-
tain a unified theoretical structure on the facts of nature. It is
thus not a surprise that the trade-off between precision, real-
ism, and generality involved in the formulation of a math-
ematical model had been so passionately debated by the eco-
logical community (see [30] for an account of the
mathematical thinking in population ecology). It was in this
historical context that MacArthur introduced a minimum
principle in ecology, akin to the principle of least action of

FIG. 10. Diversity as function of the average web connectivityc
in the case of random dilution withu/c=0.5 anda as indicated in
the figure.

FIG. 11. Reciprocal of the saddle-point parameterQ as function
of a for the linear(q), clipped(3), high-pass filter(,), and low-
pass filter(n) modulating functions. The parameters areu=0.5, N
=500, anduh=ul =1. The lines are the analytical predictions.
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mechanics, by showing that a special kind of competition
equation—namely, Eq.(3) with symmetric interspecies
interactions—minimizes a quadratic expression. That finding
was then explored to interpret species packing and competi-
tive equilibria[3]. Recently this idea was taken up and con-
siderably refined by the application of statistical mechanics
techniques that enabled not only the study of very large com-
munities but also the investigation of communities in which
the strengths of the interactions between species are assigned
randomly[5,6].

The distinctive feature of ecosystems with(nonstructured)
interspecies random interactions is the enormous number
(exponential in the number of species) of stable states or
distinct equilibria [5]. The lack of features to identify the
species, however, precludes the study of basic principles of
ecology. In this contribution we resolve the identity issue by
assigning to each species a series of characters[6]. Explic-
itly, species i is characterized by a binary string
sji

1,ji
2, . . . ,ji

pd whereji
m=1 or −1 indicates that speciesi dis-

plays or lacks characterm. Then it is possible to describe 2p

distinct species in this framework. According to Gause’s
principle of competitive exclusion, the strength of the com-
petition between a pair of interacting species should increase
with the number of features they have in common. In that
sense, the generalized form of the Hebb rule explicited in Eq.
(1) provides a very broad framework to investigate the con-
sequences of Gause’s principle to the competitive equilib-
rium for many species.

In this contribution we have focused mainly on the eco-
system diversity, defined as the fraction of theN species that
survive and hence coexist at equilibrium. A very robust result
that holds for any choice of the modulating function is the
reduction of diversity that accompanies the increase of the
number of featuresp needed to specify the species. It is
natural to associate this number or, equivalently, the ratio
a=p/N with the overall complexity of the species that com-
pose the ecosystem and hence with the complexity of the
ecosystem itself. Accordingly, our findings imply that the
number of species that can coexist decreases with the com-
plexity of the species. In fact, increase ofa leads to the
appearance of pairs or small groups of strongly complemen-
tary species, in the sense that the magnitudes of their inter-
actions exceed those of their self-restraint parameters. The
resulting unrestricted growth of this group of species culmi-
nates then with the extinction of the remaining species of the
ecosystem. Moreover, the analysis of selective as well as
random deletion of links between species shows that ecosys-
tems composed of simple species(in the above sense) are
very robust against dilution. We stress that this apparently
intuitive result is actually a mathematical consequence of the
complementarity principle used to set the interspecies inter-
actions. In addition, we find that the puzzling result that there
exists either rich or poor ecosystems in the case of a linear
modulating function is not robust to the presence of static
noise as well as to nonlinear deviations of the Hebb rule.
Hence, the discontinuity of the diversity index illustrated in
Fig. 3 is not typical of communities of species whose inter-
actions are determined by a complementarity principle.

To conclude, a few remarks relating our results to the
long-standing diversity-stability debate in ecology are in or-

der (see[31,32] for reviews). The central issue in that argu-
ment is the insurance hypothesis of biodiversity which as-
serts that the robustness against perturbations(resistance) as
well as the capacity to return to the original state after per-
turbation (resilience) increases with diversity, simply be-
cause a greater number of species is likely to exhibit a larger
repertoire of responses to environmental perturbation[33]
(see, however,[34]). This intuitive idea was confronted by
May’s remark that greater diversity lead to lower local sta-
bility of multispecies equilibria in a Lotka-Volterra competi-
tion model[1]. This result follows from the proof that sys-
tems of equations became less stable as the number of
equations increases[35]. As in the present analysis, that re-
sult was derived under the condition that both the con-
nectance of the community web and the strengths of the in-
teractions be random variables(see [36] for the
generalization of May’s analysis to random hierarchical
webs). The adequacy of this scenario to describe real com-
munity webs is, of course, arguable. In addition, field experi-
ments designed to assess the insurance hypothesis often fail
to distinguish the effect of diversity from that of species
composition, so the relationship between diversity and sta-
bility remains controversial despite(or because of) its impor-
tance to management of biological resources[31,32]. In a
sense our conclusions parallel those of May[1]. In fact,
viewing the random mutual interactions as a perturbation

(the relative strength of which is measured by the ratioaĴ/u)
of the ideal ecosystem in which allN species coexist, our
results show how the gradual introduction of mutual interac-
tions destabilizes the regime of perfect coexistencesd=1d
among the species. This instability is reflected by the extinc-
tion of a fraction of the initial species. However, Figs. 7, 9,
and 10 illustrate the complexity of the situation: the diversity
depends not only on the connectance of the web but also on
the strengths of the mutual interactions that are being added.
Compensatory effects do occur so that the diversity can ac-
tually increase as new links are incorporated in the commu-
nity web. These effects are probably due to species compo-
sition since they depend strongly on the species complexity
and disappear fora.0.5. We must note, however, that our
approach differs from the standard ecological modeling
which, as a rule, takes the number of species(diversity) as
the control parameter or independent variable and measures
the stability in terms of some appropriate response variable,
usually total biomass production. Here we consider diversity
as a dynamical variable and concentrate on its dependence
on the nature of the species composing the system as well as
on the connectance of the community web.

Statistical mechanics can contribute uniquely to the study
of large ecosystems with random interspecies interactions.
This kind of randomness stirs up difficult issues such as the
lack of self-averageness of nonextensive quantities, the non-
trivial ergodicity breaking associated with the instability of
the replica-symmetric solution, and the very slow relaxation
(aging) to equilibrium which are now fairly well understood
[37]. Interestingly, a phenomenon akin to aging in spin
glasses was observed in the evolutionary dynamics of the
tangled nature model as the average duration of the periods
of stasis was reported to increase with time[16]. In this
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contribution we ally statistical mechanics know-how to a
biologically motivated prescription for setting the magnitude
of the interspecies interactions in a form suitable to investi-
gate ecologically relevant issues such as the link between
species composition and ecosystem diversity.
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