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Model ecosystems with random nonlinear interspecies interactions
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The principle of competitive exclusion in ecology establishes that two species living together cannot occupy
the same ecological niche. Here we present a model ecosystem in which the species are described by a series
of phenotypic characters and the strength of the competition between two species is given by a nondecreasing
(modulating function of the number of common characters. Using analytical tools of statistical mechanics we
find that the ecosystem diversity, defined as the fraction of species that coexist at equilibrium, decreases as the
complexity (i.e., number of charactoref the species increases, regardless of the modulating function. By
considering both selective and random elimination of the links in the community web, we show that ecosys-
tems composed of simple species are more robust than those composed of complex species. In addition, we
show that the puzzling result that there exists either rich or poor ecosystems for a linear modulating function
is not typical of communities in which the interspecies interactions are determined by a complementarity rule.
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[. INTRODUCTION randomness ingredient of the Gaussian model, while ac-
counting for an explicit, biologically motivated structure for
Assemblies of biological species—ecosystems—can b#he interspecies interactions.

viewed as systems of elements that influence each other Borrowing from models for molecular recognition used in

through competition and cooperatifii. Mathematical mod-  the study of the immung7] and olfactory[8] systems, it is

els advanced to describe the dynamics of these systems gésumed that each species is characterized by a petud-

usually couched in terms of nonlinear rate equations whicf1Otypic charactersy=1, ... p. The resulting interaction be-

are then integrated numerically, especially in the case ofVEen a pair of species—sayand j—depends on the pres-

many interacting specidg]. For large ecosystems, however, EN¢€ Of not of the same character in both species according
an analytical statistical approach is more insightful since it istﬁeain(;g;gg!c?omgnz;?g%npcrtlir(])%lglg.f Eéphceltk% ;ﬁ?e assume that

practically impossible to explore fully the space of param-

eters associated with the rate constants and interaction b [1< o
strengths solely through numerical means. Unfortunately, the Jij= WF \—52 &g i#i, (1)
VP u=1

methods of statistical mechanics can be applied only in very

particular situations—namely, when the interactions are symyhere the&* are quenched, independent random variables
metric so that the dynamics maximize a quadratic Lyapunothat take on the values +1 with equal probability. If spedies
function [3] and when the interactions are antisymmetric soexhibits character, thené" is set to 1; otherwise, it is set to
that a constant of motion can be identifigt]. This contri-  —1. In what follows we will assume that the number of char-
bution focuses on the former case, since it can be thoroughlgtcters is extensive—i.ep=aN. Strictly, taxonomists define
investigated using tools of equilibrium statistical mechanicsspecies by searching for a reliable group of characters—i.e.,
The uncertainty and complexity of the interspecies intercharacters that are possessed by all members of the species to
actions in nature grounds the suggestion that those interage defined and not by members of other spe[@sHere we
tions should be considered as random variables. This agake a slightly different approach and define species by a list
proach may be viewed as a null hypothesis that provides af p _|dent|f|able morphological characters that a particular
standard to which the behavior pattern of realistic ecosysSP€Ci€S may or may not possess. Although we can guarantee
tems should be compared. In particular, the measures of hofflat €ach species is assigned a unique set of charaters
the encounter betwedth andjth species affects the growth Probability that two or more species are assigned the same
of speciesi, denoted byj;; for i,j=1,... N, are assumed to set of characters vanishes a$™N? in the limit of largeN),

be independent, Gaussian-distributed random variaies the odds of finding a reliable character to describe a species

This setting, however, fails to take into account the possibil-In the taxonomic sense are negligitilevanishes as 2" for

ity of an underlying, nonrandom structure in the interspecie largeN). However, since for some closely related species no
Ity . ying, nc : . P Yeliable characters have been identified, taxonomists have to
interactions, which might explain cooperative behavior a

) . s Yesort to a global approach akin to oyi€;.

cross feeding and symbioses as WQII as the compet.mve be- The modulating functiorF(x) in Eq. (1) stands for any
hawor that res_ults from the exploitation of the same niche by, 4q nondecreasing function o Hence (J;)=0 and

different species. Here we explore an alternative model eco-

system in which the pairwise species interactions are regu- ()= gfx D2F(2) @
lated by the degree of complementarity between species— TN L '

i.e., by the number of features or characters that distinguish .

the interacting specig$]. Since the assignment of the char- where Dz=exp(-z?/2)dz/ 27 is the Gaussian measure. Up
acters to each species is done randomly, the model retains th@ now only the linear caspg.e., F(x)=x] was considered in
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the literature[6,12]. Invoking Gause’s principle of competi- any single species in the thermodynamic limit— o, we
tive exclusion[13]—two species living together cannot oc- introduce a competition term between individuals of the
cupy the same ecological niche—we assume that the largesame species by settidg=u>0 for all i. Hence the param-
the number of features shared by a pair of spegiestches, eteru will be referred to as the intraspecies interaction.

the stronger the competition between them, so that 0 In the case of symmetric interactions the asymptotic re-
corresponds to pairs of competing species whedgas0 to  gime of Eq. (3) can be characterized by looking at the
pairs of cooperating species. The nonlinear Hebb rule wamaxima of the fithess functional

proposed and studied within the context of attractor neural

networks[10,11, as a more realistic, from the biological Fx}) == 2 Jxx;, 5
viewpoint, generalization of the standagithean Hebb rule L

(see[14] for a review. This generalization seems also ap-and so it can be shown that the only stationary states are
propriate in the present context of model ecosystems. Fdfxed points[15]. Following Sompolinsky, in the case that
example, one could envisage a situation in which the interthe interactionsJ;; are given by the nonlinear Hebb rulg)

action becomes effectiv@onzerg provided the net number and the number of characters is extensive, we write the fit-
of matches exceeds a threshold value or the interaction coulgess functional agL0]

simply saturate after a certain number of matches, the ex- )
treme situation being the clipped interactiBfx) =sgr(x). J
In this contribution we use the replicator dynamics frame- Fxh == E (N ge+ ﬁi)xixj - UE xt, (6
work to model the evolution of an isolated community of 1#) A Test '
interacting speciefl5]. As pointed out, in the case of sym- whered; is a random Gaussian noise of zero mean and vari-
metric interactions);;=Jj;, such as the nonlinear Hebb rule, 5nces2/N with 52=a(3—J2). Here,
this dynamics maximizes a quadratic fitness functional so
that standard tools of the statistical mechanics of disordered -
systems can be used to characterize its stationary states. Ac- J= f DzzH2), (7)
tually, the statistical characterization of these states is pos- -
sible thanks to the remarkable result derived by Sompolinsky .
that in the limit of extensivep the model with nonlinear jzf DzF(2) ®)
interactions is equivalent to the model with linear interac- '
tions plus a Gaussian static noise, the variance of which is R
determined by the nonlinear functiqgQ]. In what follows  Note thatJ is proportional to the variance of the interspecies
we will use that finding together with the replica method tointeractionsJ;; given in Eq.(2). It must be stressed that the
study how the choice of the modulating function affects theequivalence between the model with nonlinear interactions
statistical properties of the stationary states of the replicatoand the model in which a Gaussian noise is added to the
dynamics. linear interactions is valid only iF(x) is odd,p is large, and
the expected value of random variablgsis zero.
Il. MODEL Before embarking on the statistical mechanics analysis of
o . our ecosystem model, it is instructive to compare it with a

_ We assume that the abundance of_ individuals of specieg|ated model recently proposed in the literature—the
i=1,... N in the ecosystemy, [0,=), is governed by the  {5n5jed nature modéL6,17. Inspired in models of adaptive
nonlinear system of equations, so-called replicator equationgyaiks on complex fitness landscapgks] (see[19] for a
dx b formulation of stochastic walks which is more pertinent for
—:xi(]-'i ——), (3) this discussion this model identifies each individual in a
dt N population of variable size by a binary string of fixed length:
where 7;=-3,J;x; can be identified with the fitness of spe- the indiyidual's genome. The fitness pf a given individual is
ciesi and the termp=3xF; ensures that the total concen- proportional to the overlap between its genome and the av-

—o0

tration erage genome of rest of the population, weighted by a ran-
N dom interaction term that depends on the genomes of the

interacting individuals. The main effect of this random term

;1 % =N (4) is to break the symmetry of the interactions. The individual’s

genome is akin to the feature vectg;l:(gil, ...,&) and the

is kept fixed. dependence of the fitness on the overlap between genomes is

Apparently, this framework seems to be suitable only tosimilar to that exhibited in Eq(6). A crucial difference be-
study chemostat cultures of microrganisms where the totalveen the models, aside from the symmetry of the interspe-
concentration is regulated to a constant level via some fluxies interactions, is that in the tangled nature model the ge-
control mechanism. However, since it was demonstrated thatomes can change via mutations, leading to a very rich
the replicator dynamics foN species is equivalent to the dynamics characterized by long stasis periods and very sharp
Lotka-Volterra equation foN-1 species, this formulation transitions. Moreover, the notion of species appears as an
can actually be applied to describe a much broader class @mergent structure in the distribution of the population in
ecosystem§l5). Finally, to prevent the unbounded growth of genome spac§l6,17. As expected, the complexity of the
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tangled nature model precludes an analytical approach to * dy, 1
study its dynamics and the investigations of that model were G=| II _VZTa-r exp - 52 ya(1+283Q,)
- a a

limited so far to computer simulations. It is interesting to
note, however, that it is possible to study analytically within
the equilibrium statistical mechanics framework the coupled -2832 qabyayb} (14
dynamics of species and features by exploring the physical a=b

interpretation of the finite number of replicas proposed byT
Coolenet al. [20]. We shall pursue this research line in a
future contribution.

he relevant physical order parameters are

1

=— XiaXip) ), a<b, 15

IIl. REPLICA APPROACH G Nz« X)) (19
The maxima of the fithess functional can be obtained d

within the statistical mechanics framework in the limit of
infinite N (and hencep). Since the presence or absence of a 1
character in a giyen species i; decided randqmly, we must Q.= NE AT (16)
resort to the replica approach in order to obtain the average i

free-energy density from which the relevant parameters of

the model can immediately be derived. We begin by defining?’VhiCh measure the overlap between a pair of stationary states
the average free-energy densftys abeled by the replica indices and b and the overlap be-

tween the stationary state labeledadwith itself. Here(- - )1
- Bf = lim £<In ) (9) stands for a thermal average taken with the Gibbs distribu-
N ’ tion

N—oe

where 1

. W) = 25(“‘ > xi)exriﬁﬂ{xi})i. (17)

z= f IT o, 5<N -3 xi>exi:[,8]-"({xi})] (10) |
0! ' To proceed further and evaluate the extremum in(Eg) we

is the partition function an@=1/T is the inverse tempera- must make some simplifying assumption about the structure

ture. The notatior: - -) stands for the average over the prob- of the saddle-point parameters.

ability distribution of the quenched random variabfsand

the Gaussian noisé;. Taking the IimiiTHO_ in Eq._(lO) A. Replica-symmetric solution

ensures that only the states that maximfzevill contribute _ _ )

to Z. As usual, the evaluation of the quenched average can be The simplest guess is that the saddle-point parameters are

carried out through the replica method, which consists ofymmetric under permutations of the replica indices—i.e.,

calculating(Z") for integer n—i.e., Z"=II,_,Z%—and then Q.p=0, Gap=0, Qa=Q, Q,=Q, andr,=r. This prescription

using the identity facilitates greatly the evaluation of the integrals in E4S)
1 and (14), resulting in the following replica-symmetric free
(Inz)= lim ~ In(z", (11)  energy density
n—0
in which the analytical c_ontinugtion _um:O is implicit. fr= gq(252q -9+ % - Q[lg(é + 52Q)
After standard algebric manipulations that include saddle- 283Q-q)

point integrations in the limit of larg®l, we find 1 . 1
—u+ad]-r+—In(Q+q?2) - — In(w/4B?)
: 1 . 2B 2B
f=- Im}) eXtrﬁ :82 qab(zazqab_ qab) + 2 la
n—

asb . : + % In[1 +283(Q-q)] - % J DzIn[€%: erfo(=,)],
+ E Qul A(Qa+ #Qa) ~ i+ ad] + 2 In Golfar Qarfa) (18
+ 2 1n Gy (Gapy Qg}, (19~ where
ﬁ r— qllzz
g5, =—.: 19
where z 2(Q+61/2)1’2 (
Go= jo [Tdx, exp[— B Xalra+ BQaXg) + ﬁZEb QarXaXo In this framework the definitiongl5) and (16) become
13 1
3 q= 2 (0D, (20
and i
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1 ) cies concentrations; can take on. This can be done by cal-

Q= NE X, (21)  culating explicitly the cumulative distribution that the con-

: centration of a given species—sa¥,—assumes a value

where the thermal average is now calculated using thémaller tharx, defined by
replica-symmetry prescription. Hen€@—q>0 is the aver-
age variance of the species concentration at equilibrium. The L ”
saddle-point parametecs Q, r, @, andé can be obtained by Cdx) = ,!leo ];[d>q®(x XWX, (29
solving the five coupled nonlinear equations that result from
extremizing the free energy with respect to each of themwhere®(x)=1 if x=0 and 0 otherwise, and/({x}) is given
Since our aim is to single out the states that maximize th%y Eq.(17). Since all species concentrations are equivalent,
fitness functional, we must consider the zero-temperaturge can writeC,(x)=C(x) Ok and evaluate Eq29) by adding
limit B— oo of the saddle-point equations. In this limit it is the field termhX;®(x-x) to Eq.(6). Taking the derivatives
convenient to introduce the auxiliary parameters25(Q  of the resulting free energy with respect ticand then the
-q), A=r/g"? and \=2B8(Q+§/2) so that the saddle-point limit h—0 yields
equations are written as

AGH? + \x
1(” C=1-> erfc] 2~ (30)
v= N Dz 2z-A), (22 2 (29)
A
An interesting outcome of the random replicator model is
qt2 [~ that a fractionC(0) of the species are extinct in the stationary
1=—] Dz(z-4) (23 i i i inetion i
N ' regime[5]. Since the mechanism of extinction is clearly out-
A competition, the extinction sizes must be determined by the
) form of the interspecies interactions. To investigate quantita-
N=u- &% - avd ' (24) tively this effect we define the diversity index,
1+0d
1 -
g2 d= > erfa(A/V2), (31
Q= T(ﬁllzv -4), (25)
as the fraction of surviving species at equilibrium. We note
. aJ? that there seems to exist a remarkable correlation between
4=0Q| & +m - (26)  the reciprocal of the paramet€ and the diversity index

[22]. In fact, the larger the fraction of surviving species, the
Using Egs.(22) and(23) we can rewrite Eq(25) as smaller the probability that two randomly chosen individuals
are of the same species.

J Dz(z- A)?
Q= A 5 (27) B. Stability analysis
J Dz(z-A) Before we begin the presentation and discussion of the
A numerical solution of the saddle-point equations it is impor-

tant to check that the replica-symmetric solution is in fact
locally stable. An instability of the solution is determined by
a sign change inat least one of the eigenvalues of the

matrix of quadratic fluctuations around the replica-
symmetric solution. Following the standard stability analysis

in order to make clear thd is a positive quantity. Finally,
taking the zero-temperature limit in EGL8) and using these
saddle-point equations to simplify and rearrange the term
yields the expression

_Q £ aJ?Qu [23] it can be shown that the stability is determined by the
fo= E()\ - o) - 2(1 +vJ)? (28) eigenvalues of the matrix
for the average fitness of the population. The results for the (aZGO -1 )
i ; , 32
standard random replicator model are recovered by setting ~1 48P+ aG, (32

J=0 and §*=1 [gz] and those for the linear Hebb rule by
settingJ=1 and 5-=0 [12]. Except forQ, which is propor- . . . .

tional to the probability that two randomly selected individu- where Gy is the[(1/2)n(nir3)]—d|men5|onal matrix of sec-
als belong to the same species, a measure known as Simpad derivatives 0fGy (Qap, Qa,ra) With respect to its argu-
son’s index[21], and the suceptibility that measures the ments. Similarly*G; is the[(1/2)n(n+ 1)]-dimensional ma-
fluctuations around the average species concentratiofyx of second derivatives 0B, with respect tag,, and Q,.
knowledge of the saddle-point parameters is not very illumi-Requiring all the eigenvalues of this matrix to be positive
nating. However, they are necessary to the evaluation deads to the following conditioiisee[24] for a similar cal-
more informative quantities such as the values that the spesulation)
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FIG. 1. Reciprocal of the saddle-point paramefeas function FIG. 2. The reciprocal of the saddle-point paramegemt u
of u for linear interactions ana as indicated in the figure. Far ~ =@=<0.5 where the suceptibility diverges in the case of linear
>« anda<1/2 only the higher brancHarger 1) is physical. ~ Intéractions.

2 q mined by the vanishing of this denominator and the conse-
A= {52+ a—z}— <1 (33  quent divergence of. As it is clear from Eq(22), v— < is
(1+vJ) solution provided thah — 0, which, according to Eq24),
We note that the factat defined by Eq(31) is missing in an |mpl|esu_:a. _The precise values af (and hen<_:e of 1) at .
analogous formula presented in RE2]. This factor is nec- which this divergence takes place are obtained by solving

e ; X
essary to recover the results for the Gaussian mittg! aQ(4) _R (_A)_O and th? solutions, n term; of @/ are
shown in Fig. 2 as function ai=«. This equation does not

have solutions foeww>1/2 and hence there is no divergence
IV. RESULTS of the susceptibility in this regime. In particular, we find
Q.=mata=u=1/2.
The discontinuity of the saddle-point parameterat u
a<<1/2 resulting from the dropping of the unphysical so-
lution is, of course, reflected on the diversity measure. Figure
3 illustrates this point and highlights the remarkable result
that for certain choices of the intraspecies competition pa-
rameter(u<1/2) there are either rich or poor ecosystems:
intermediate diversity values are simply forbidden. We have
A. Linear interactions no physical or biological intuition to explain this behavior
. . . . . attern, especially because it seems to be unique to the linear
This case 1s ob_tamed by s_ettm@? 0 andJ=1 in the pase In fazt frorYn the mathematical wewpmgt the saddle-
saddle-point equations. The trick to solve those equations 'ﬁomt equations admit a solution with diverging suceptibility
to considerA as a fixed, given parameter ands unknown.  yaaise of the simultaneous vanishing\aguch that the
Hence by varyingA we can find the saddle p0|'nt solutions productAv goes to a finite constant according to Kg2).
for different values ol. This procedure is effective because Inspectlon of Eq(24) shows that such a solution is not ad-
in the linear case we can write all sadddle-point parameters

as explicit functions ofA as in the case o [see Eq(27)] 1

To solve numerically the saddle-point equati¢B®)—(26)
one has to fix the control parametersand o as well as the
function F(x). To set a standard for comparing the effects of -
different choices of the functiofr(x) we discuss first the
linear case—i.e F(x)=x (see[12] for a preliminary analysis
of this limit).

andv, \
12 08 f 0.2
po LaQUP? 34
[@Q(A)]"* = R(A)
where R(A)=[3DzAz-A)/[}Dz(z-A) and we have made 08 04
explicit the dependence @ on A through Eq.(27). The ©
final result is summarized in Fig. 1 where we show the de- 041
pendence of the reciprocal @ on the parameteu. The 0.5
unusual feature is the appearance of three solutions in the 0.2r 06 1
regimeu=«a andw<<1/2. However, only the solution corre- g
sponding to the larger value of @Q/(upper branchis physi- 0 S
cal. The other two solutions correspond to negative values of 0.2 0.4 0.6 0.8 1

the suceptibilityy and so they must be discarded. In fact, the “

regime of multiple solutions occurs when the denominator of FIG. 3. Diversityd as function of« for linear interactions and
Eq. (34 is negative and the onset of this regime is deter-as indicated in the figure.
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FIG. 4. Diversity as function ofx for clipped interactiong 6 FIG. 6. Almeida-Thouless lines in the plate,u) for the three-
=0) andu as indicated in the figure. level interactions modelvalues of the cutoffd as indicategl The
thin solid line is the result for the linear case and the dashed straight

line is the diagonakv=u.
missible in the case tha#?>0. We conclude then that the

threshold phenomenon illustrated in Fig. 3 is not robust to B. Three-level interactions
the presence of Gaussian noise, even for a vanishingly small The choice of the modulating functiof(x) determines
variance or, equivalently, to any distortion of the linear Hebbthe magnitudes of the interspecies interactions. However, it
rule. is often the case that no quantitative information is available,
Although it is clear that increasing the intraspecies com-and the best we can infer are the signs of the interacfibs
petitive interactionu leads to an increase of diversity, it is To model this scenario we s&i(x)=sgr(x) if [x|> 6 and 0
more difficult to understand why the increase of the numbeptherwise. Hence the interactions become effective only if
of features of each species results in a reduction of diversityhe net number of matchgsr mismatchegbetween homolo-
This can be explained by noting that, whatever the choice 0ous characters exceeds the cutoff vatize0. Clipped in-
F(x), the variance of the interspecies interaction strengthéeractions are obtained by settifig0. Evaluation of EqS(7)
grows linearly witha [see Eq.(2)]. This means that the and(8) yields J=(2/m)%exp(~6?/2) andJ=erfq(6/+2), re-
larger «, the greater the odds of producing pairs of stronegSpeCtive|y. Hence the varianéis a monotonically decreas-
cooperating species such that the interactions among theiig function of 6. Figure 4 shows the dependence of the
overshadow the self-restraint parameteiThe diversity re-  diversity on« in the case of clipped interactiorts=0. As
duction observed in Fig. 3 is then a consequence of the urpointed out before, there is no threshold phenomenon in case
restricted growth of small groups of species that ends up tof nonlinear interactiongs?>0); i.e., all saddle-point pa-
drive less favorable species to extinction in order to fulfill rameters are smooth functions of the control paramaiers
constraint(4). A word is in order about the stability of the and«. We note a substantial reduction of diversity as com-
replica-symmetric solution. Far<<1/2 we find that this so- pared with the linear case. This point is reinforced in Fig. 5
lution is stable foru< a, while for «>1/2 it is stable fou  where the effect of varying the cutoffis presented together
slightly smaller thanx (see Fig. 6. with the result for the linear case. For fixedthe diversity
increases monotonically with increasirty approaching its
maximum valued=1 in the limit #—o0. This behavior is
expected for large values of the cutgffe., 6> o'/ since
then most of the off-diagonal interactions and, consequently,
of the randomness are removed from the fithess functional.
However, the effect of a small cutoff is more subtle and, as
we shall see, depends on the particular choice of the modu-
lating function.
The regions in the spader,u) where the stability condi-
tion (33) is satisfied are shown in Fig. 6. The equatidn
=1 defines the so-called Almeida-Thoul€sd) line that de-
limits the stablgabove the AT ling and the unstabléelow
the AT line) regions. The nonlinearity makes the replica-
0 s s s s symmetric prescription less reliable for small which is
" 0.2 0.4 0.6 0.8 1 expected since there is an additional sourcg@hussian
o randomness in this case. For largehowever, this prescrip-
FIG. 5. Diversity as function ofx for three-level interactions tion is more reliable since fo6> 0 the variance and hence

(values ofé indicated in the figureandu=0.5. The thin line is the ~ the_typical magnitude of the off-diagonal interactioh]ﬁ)
result for the linear case. xad is smaller than that of the linear model.
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FIG. 7. Diversity as function of the cutoff, for the high-pass FIG. 8. Aimeida-Thouless lines in the plaf&,,u) for the high-
filter with u=0.5 anda as indicated in the figure. pass filter andy as indicated in the ﬁgure_

C. High- and low-pass filters A A ~
. . . the n0tati0nJ2J| and J:J|, we find J|:J|:1_Jh, with ‘Jh

The main advantage of studying a model ecosystem is, ngjen py Eq.(35). Hence the variancé® coincides with the
doubt, the option to carry out any type of experiment t0yaiance of the high-pass filter and, in particular, it reaches a
clarify the behavior of the observables of interest. In the, o ium value a= 6 ~1.538. This explains the striking
present context, an interssting possibility is to carry out Ssimilarity between Fig. 9, which shows the diversity as func-
selective elimination of interactions, depending on theirijon of the cutoff for the low-pass filter, and its counterpart
magpnitudes. In the case of the high-pass fil€0=x if  for the high-pass filter, Fig. 7. These two figures indicate that
x> 6, and 0 otherwise; this may be justified by identifying yhe removal of either very weak or very strong interactions
the cutoff 6,=0 with the precision with which the interac- p5g jittle or none effect on the diversity of the ecosystem,
tion strengths are measured, so that magnitudes_ below ”@(cept fora close tou, when, in the case of the high-pass
cutoff value are simply not detectable. Alternatively, by fijer the diversity decreases linearly with increasifigfor

knocking out the small interactions we can infer their influ- g1l values of this cutoff. We note that the qualitative de-
ence on the ecosystem diversity. Evaluation of Eg@sand  nendence ol on the cutoff exhibited in Figs. 7 and 9 is not

(8) now yieldsjzjh andJ=J, with altered by changing the value of the intraspecies interactions
1 = u. Moreover, the Almeida-Thouless lines for the low-pass
Iy = (21) 26, exp(- 67/2) + erf( 6,/12) (35 filter exhibit maxima for all values of, similarly to what we

- ] have found in the analysis of the high-pass filter.
andJ,=J,, so thats®>=aJ,(1-J,). We note tha®? reaches its

maximum valuex/4 at 6,~1.538 and the linear case is re-
covered by settingd,=0. Figure 7 illustrates the nontrivial D. General remarks

role played by the weak interactions—depending on the

value of a, their removal results in a great reduction of di-  The high- and low-pass filters discussed above can be
versity, in stark contrast to our previous finding for the three-viewed as a kind of discriminating dilution or disconnection
level model. As pointed out before, the increase @ir large
cutoff values is an expected effect of the elimination of the
random off-diagonal interactions. The diversity minimum
displayed in this figure fore not too large is probably a
consequence of the existence of a maximum in the variance 08¢
& of the Gaussian noise term. We note, however, that while
the value of the cutoff corresponding to the diversity mini- 06|
mum decreases and ultimately disappears for increasing
the maximum ofé® occurs ata:], regardless ofv. Naturally,

one expects the replica-symmetric saddle-point to be less re- 04

liable in this situation of maximum randomness. This intu-

ition is actually confirmed by the Almeida-Thouless lines 02t

exhibited in Fig. 8, although the points of maxima in these

lines do not coincide exactly with the cutoff that maximizes 0 :

) 0 1 2 . 3 4 5
This analysis was complemented by the inspection of the !

low-pass filter,F(x)=x if [x|< & and O otherwise, withg, FIG. 9. Diversity as function of the cutoff for the the low-pass

=0. The linear case is recovered in the limjt—%. Using filter with u=0.5 anda as indicated in the figure.
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FIG. 10. Diversity as function of the average web connectigity ~ FIG. 11. Reciprocal of the saddle-point parameeas function
in the case of random dilution with/c=0.5 ande as indicated in  of a for the linear(Q), clipped(X), high-pass filte(V), and low-
the figure. pass filter(A) modulating functions. The parameters are0.5, N

=500, andg,=6,=1. The lines are the analytical predictions.

of (bidirectiona) links in the community web. Interestingly,

the very same set of saddle-point equations, E2@8—26),

can be used to describe the situation in which the species ateute-force solution of Eq(3) for several choices of the
disconnected at random. In fact, Sompolinsky has shown thahodulating functior=(x). Here we focus on the reciprocal of

if the links are cut randomly so that the average number othe order paramete®, in order to highlight its similarity
links for each species Nc with c € (0, 1], then the effect of  with the diversity measure privileged in the previous figures.
dilution will be equivalent to the addition of an independentThe agreement is excellent in the regions where the replica-
Gaussian noise of variana=a(1-c)/c to the Hebb rule  symmetric saddle point is stable, which correspond to the
(J=1) [10]. This result depends on rescaling the mutual in-regime of smalky, but even outside this region the agreement
teractions, Eq(l), by ¢ and so the self-interactianmust be js not bad. When the variance of the off-diagonal interac-
rescaled accordingly. The results for the fully connected, “n'tions, which is proportional tad [see Eqs(2) and (8)], is

ear case are recovered for1. In Fig. 10 we illustrate the . ; .
very small compared to the self-interaction teupwe find a

effect of random dilution on the ecosystem diversity. The h terized by th ist f .
results are very similar to those of selective dilution depicte €gime characlerized by the coexistence o a macroscopic
pumber of speciesi.e., x;=1 for all species) and hence

in Figs. 7 and 9, although in this case there is no direc N
correlation between dilution and the magnitude of the interl/Q— 1. In the other extreme, whemJ> u, the stationary
actions, except perhaps for a negligible sampling effect.  solution is characterized by the dominance of a few species
A traditional approach to study the structure of ecosys-only (i.e., x;=N for a finite number of specigsimplying
tems is to look at the number of species that a habitat cathat 1/Qo1/N. In this sense, for larger the discrepancy
sustain and at the relative abundance of each species in thetween the theoretical prediction derived in the thermody-
community. In particular, field ecologists had long observedhamic limit and the simulations carried out for finlkewas
that most species of plants in a secluded community werexpected already. The result for the low-pass filter tends to
relatively rare, while a few species were fairly comni@8].  zero much slower than for the other modulating functions

Those data are satisfactorily fitted by geometric distributionsbecause the factdrin the variance of the off-diagonal inter-
which, in turn, are derived using continuous-time branChingactions is much smaller in that case

process to model the birth and death of spe¢#5§2§. In
the present model, the distribution of species abundanse
given by the derivative of the cumulative distribution, Eq.
(30), which yields a Gaussian term centereckat-Ag2/\ V. CONCLUSION
plus a Diracé at the originx=0. Hence most of the surviving
species occurs at a well defined abundance value, so that Ecology was one of the first disciplines of biology to em-
both rare and common species are very infrequent. Since tHace mathematical thinking and modeling as a guide to at-
particular form of the cumulative distributio(80) results tain a unified theoretical structure on the facts of nature. It is
from the mean-field, quadratior higher-orde{29]) nature  thus not a surprise that the trade-off between precision, real-
of the interactions between species, it is unlikely that a geolsm, and generality involved in the formulation of a math-
metric (power-law distribution for the species abundance is ematical model had been so passionately debated by the eco-
derived in the random replicator framework. logical community (see [30] for an account of the

To conclude this section we present in Fig. 11 a comparifmathematical thinking in population ecologyt was in this
son between the analytical predictions based on the replicddstorical context that MacArthur introduced a minimum
symmetric prescription and the numerical results of theprinciple in ecology, akin to the principle of least action of
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mechanics, by showing that a special kind of competitionder (see[31,32 for reviews. The central issue in that argu-
equation—namely, EQ.3) with symmetric interspecies ment is the insurance hypothesis of biodiversity which as-
interactions—minimizes a quadratic expression. That findingerts that the robustness against perturbatimrsstancgas
was then explored to interpret species packing and competivell as the capacity to return to the original state after per-
tive equilibria[3]. Recently this idea was taken up and con-turbation (resiliencg increases with diversity, simply be-
siderably refined by the application of statistical mechanicgause a greater number of species is likely to exhibit a larger
techniques that enabled not only the study of very large comyepertoire of responses to environmental perturbaf@s]
munities but also the investigation of communities in WhiCh(see, howeverj34]). This intuitive idea was confronted by
the strengths of the interactions between species are assign,g%ly,S remark that greater diversity lead to lower local sta-

randomly|[5,6]. bilit : . S X
yL=hl y of multispecies equilibria in a Lotka-Volterra competi-
The distinctive feature of ecosystems witfonstructuretl 4y model[1]. This result follows from the proof that sys-

interspecies random interactions is the enormous numb(?(rems of equations became less stable as the number of

(exponential in the number of spediesf stable states or equations increasg85]. As in the present analysis, that re
istin ilibri . The lack of f r identify th . ‘ - ' )
distinct equilibria [5] e lack of features to identify the It was derived under the condition that both the con-

species, however, precludes the study of basic principles £ th ) b and th hs of the i
ecology. In this contribution we resolve the identity issue byn€ctance of the community web and the strengths of the in-

assigning to each species a series of charagédr&xplic-  teractions be random variablegsee [36] for the

itly, species i is characterized by a binary string generalization of May's a_naly5|s t_o random. hierarchical
(&,8,....8) where&*=1 or -1 indicates that speciesis- web.f). The a(_jequacy of this scenario to d(_a_scrlb_e real com-
plays or lacks charactgr. Then it is possible to describ@ 2 Munity Webs is, of course, arguable. In addition, f|elq experi-
distinct species in this framework. According to Gause'sMents designed to assess the insurance hypothesis often fail
principle of competitive exclusion, the strength of the com-t0 distinguish the effect of diversity from that of species
petition between a pair of interacting species should increasgPmposition, so the relationship between diversity and sta-
with the number of features they have in common. In thatility remains controversial despiter because 9fits impor-
sense, the generalized form of the Hebb rule explicited in Eqf@nce to management of biological resour¢g$,32. In a

(1) provides a very broad framework to investigate the conS€nse our conclusions parallel those of Mdy. In fact,
sequences of Gause’s principle to the competitive equilibY!€WINg the random mutual interactions as a per'Eurbatlon
rium for many species. (the relative strength of which is measured by the ratiou)

In this contribution we have focused mainly on the eco-of the ideal ecosystem in which &N species coexist, our
system diversity, defined as the fraction of thepecies that results show how the gradual introduction of mutual interac-
survive and hence coexist at equilibrium. A very robust resultions destabilizes the regime of perfect coexiste(ael)
that holds for any choice of the modulating function is theamong the species. This instability is reflected by the extinc-
reduction of diversity that accompanies the increase of théion of a fraction of the initial species. However, Figs. 7, 9,
number of featurep needed to specify the species. It is and 10 illustrate the complexity of the situation: the diversity
natural to associate this number or, equivalently, the rati@lepends not only on the connectance of the web but also on
a=p/N with the overall complexity of the species that com- the strengths of the mutual interactions that are being added.
pose the ecosystem and hence with the complexity of th€ompensatory effects do occur so that the diversity can ac-
ecosystem itself. Accordingly, our findings imply that the tually increase as new links are incorporated in the commu-
number of species that can coexist decreases with the comity web. These effects are probably due to species compo-
plexity of the species. In fact, increase afleads to the sition since they depend strongly on the species complexity
appearance of pairs or small groups of strongly complemerand disappear foae>0.5. We must note, however, that our
tary species, in the sense that the magnitudes of their inteepproach differs from the standard ecological modeling
actions exceed those of their self-restraint parameters. Thehich, as a rule, takes the number of speciisersity) as
resulting unrestricted growth of this group of species culmi-the control parameter or independent variable and measures
nates then with the extinction of the remaining species of the¢he stability in terms of some appropriate response variable,
ecosystem. Moreover, the analysis of selective as well agsually total biomass production. Here we consider diversity
random deletion of links between species shows that ecosyss a dynamical variable and concentrate on its dependence
tems composed of simple specigs the above senseare  on the nature of the species composing the system as well as
very robust against dilution. We stress that this apparentlypn the connectance of the community web.
intuitive result is actually a mathematical consequence of the Statistical mechanics can contribute uniquely to the study
complementarity principle used to set the interspecies interef large ecosystems with random interspecies interactions.
actions. In addition, we find that the puzzling result that thereThis kind of randomness stirs up difficult issues such as the
exists either rich or poor ecosystems in the case of a linedack of self-averageness of nonextensive quantities, the non-
modulating function is not robust to the presence of statidrivial ergodicity breaking associated with the instability of
noise as well as to nonlinear deviations of the Hebb rulethe replica-symmetric solution, and the very slow relaxation
Hence, the discontinuity of the diversity index illustrated in (aging to equilibrium which are now fairly well understood
Fig. 3 is not typical of communities of species whose inter-[37]. Interestingly, a phenomenon akin to aging in spin
actions are determined by a complementarity principle. glasses was observed in the evolutionary dynamics of the

To conclude, a few remarks relating our results to thetangled nature model as the average duration of the periods
long-standing diversity-stability debate in ecology are in or-of stasis was reported to increase with tif#6]. In this
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